Time Series Analysis and Forecasting using Python
Learn about time series analysis & forecasting models in Python |Time Data Visualization|AR|MA|ARIMA|Regression| ANN
Description
You're looking for a complete course on Time Series Forecasting to drive
business decisions involving production schedules, inventory
management, manpower planning, and many other parts of the business.,
right?You've found the right Time Series Analysis and Forecasting course. This course teaches you everything you need to know about different forecasting models and how to implement these models in Python.
After completing this course you will be able to:
- Implement time series forecasting models such as AutoRegression, Moving Average, ARIMA, SARIMA etc.
- Implement multivariate forecasting models based on Linear regression and Neural Networks.
- Confidently practice, discuss and understand different Forecasting models used by organizations
A Verifiable Certificate of Completion is presented to all students who undertake this Marketing Analytics: Forecasting Models with Excel course.
If you are a business manager or an executive, or a student who wants to learn and apply forecasting models in real world problems of business, this course will give you a solid base by teaching you the most popular forecasting models and how to implement it.
Why should you choose this course?
We believe in teaching by example. This course is no exception. Every Section’s primary focus is to teach you the concepts through how-to examples. Each section has the following components:
- Theoretical concepts and use cases of different forecasting models
- Step-by-step instructions on implement forecasting models in Python
- Downloadable Code files containing data and solutions used in each lecture
- Class notes and assignments to revise and practice the concept
Post a Comment
Post a Comment